
ELLIOTT 903 ALGOL 

Transiator store map. December 1966 

8 = 5969 Translator and constants 

5970 ~ 5999 Patch space 

6000 - 6014 Workspace W 

6015 - 6056 Input buffer INBUF (INBUF-1 is referenced) 

6057 - 6146 Stack (See location SP + 1) 

6147 ~ 7794 CODL growing upwards towards 8191 
Namelist growing downwards towards 0 

7795 ~ 7998 Built in names 

7999 Spare 

8000 - 8179 Spare 

D. Hunter.



ELLIOTT 903 ALGOL 

How to add names to the built in namelist December 1966 

1. General 

Li It does not matter where the name is added to the 
list which is in alphabetical order except that 
CHECKB, CHECKI and CHECKR are at the end; it was 

at one time necessary for them to be at the end, 
but this is no longer so. 

12 If the namelist is altered in length the following 
changes must be made in the Translator on the 
assumption that the last name continues to occupy 
locations 7995 ~- 7998 inclusive. 

1.2.1 The SIR directive at the front of the namelist 
must be reduced appropriately, e.g. by. 8 to 

@+ 7787, for one extra procedure naie with a 

few parameters. 

1.2.2 At START + 9 the instruction 2 + 7795 must be 

changed to, e.g. 2 + 7787, for one extra procedure 

name. If this is not done the name will be 

cleared to zero at the start. 

1.2.3 At START + 45 the instruction 4 - 200 must be 
changed to, e.g. 4 - 208 for one extra procedure 
name. If this is not done the name will not 
have its "used" bit set to zero at the start. 

Re Structure of a namelist entry 

Only procedure names are considered here, If a procedure 
has parameters then extra space is required for their codewords 

e.g. the procedures P, CAT and FRED with 0O,.1 and 5 parameters:- 

Without parameters One parameter Five parameters 

+ O 

, Hi 5 codewords 

p 5 

+ 0 p4 

; = , 3 codewords 

pl pl 

&P £CAT £FPRE 
+ O + O £D 
wd 3 wd 3 ; wd 3 

wd 4 wa 4 wd 4 

. It can be seen that although P occupies a single 4 word 
, entry CAT requires two and FRED requires three entries of 

4 words each.



N
d
 

Parameters, if present, are described by codewords pl, 

p2 etc. where pl describes the first parameter, p2 the second 
etc. Up to 4 parameters can be accommodated in a block of 
four words. Codewords are as follows:- 

Parameter type Codeword 

"peal &106100 If called by value 
integer &106500 add the constant 
boolean &105100 &2000000 

real array &046100 
integer array &046500 
boolean array &045100 

real procedure &116120 Procedures without 
integer procedure &116520 parameters. For 
boolean procedure 6115120 procedures with para- 

meters see below* 

procedure &100120 
switch &040200 
label &100200 If called by value see above 

string &000040 

The block of 4 words holding the name and its details has 

the first six characters of the name stored left justified and 

space filled in words 1 and 2. 

The third word wd 3 contains in its function part a l 

ora 2. If it contains a 1 then the procedure must be on 

the library tape and the address part of wd 3 must point to 

the name e.g. 

1 3;-+2 

One can arrange a shared group of names, see for example SIN, 
COS and ARCTAN sharing the name QATRIG. If this is done then 

the shared name must not _start_a block of four parameter entries. 

If it does then the "reset names" part of initialisation will 

treat the block as a name and reset the used bit to zero, 

spuriously, 

If wd 3 contains a 2 in its function part then the 13 pit 

address part is treated as follows:- 

The five most significant digits form the function part 
of a pord and the eight least significant digits form the 
address part with zeros between the functions and address parts. 

[ | J 
a“ ob 

<—-O-->» 

The function part is usually /15 or 15 for a PRIM or INOUT 
operation. If. an INOUT operation is involved and the procedure 
name is discovered to be inside a print or read list, eleven 

is added to the address part. In theory one could generate 
any pord one likes. If a PRIM operation is involved and the 

“procedure is a type procedure the PRIM UP which is normally



produced is suppressed as is required by the interpreter, 

The final word, wd 4, is constructed as follows:- 

real procedure &116120 
integer procedure without parameters &116520 
boolean procedure 115120 
procedure &100120 

real procedure &036100 

integer procedure with parameters &036500 plus the 

boolean procedure &035100 number of 

procedure &020100 paraneters 

E.g. a real procedure with ten parameters would be &036112 

* The codeword for a real procedure with parameters is 

6036100; note that the number of parameters is left blank in 

the codeword. 

3. Assembly of the namelist 

Use SIR at 512 to assemble the namelist. Then dump 

this by using the non-standard 722/23 to be found on the "USEFUL 

TAPES" tape and an appropriate data tape. 

A, Adding namelist to translator 

After input of the relocatable translator tape clear out 

the loader by using "CLEAR FROM 7168" on the "USEFUL TAPES" tape. 

Then dump the store from 8-7999 inclusive using the non-standard 

122/23. 

D. Hunter



die INTRODUCTION 

26 LIMITATIONS IMPOSED ON IFIP SUBSET ALGOL 

3. THE DATA STORE 

4, THE CHARACTER SET - 

Ba PROGRAM STRUCTURE 

6. TYPE HANDLING 

vi NOTAT1ON 

8. REFERENCE LISTS 

9. NOTES ON TRANSLATOR LISTING 

Routines 

CONTENTS 

CENTRAL LOOP 
FAIL 
TAKCHA 
IDENTIFIER 
EVALNA 
NUMBER 
BCR 
UNSTAK 
EXP 
PRAMCH 
SEARCH 
SECODL 
TAKE IDENTIFIER 
TAKE 
TYPCHK 
ACTOP 
ARRAY BD 
DEC 
DECL 
ENDSTA 
FORCOM 
COLLAPSE FORMAL PARAMETERS (FCLAPS) 
COLLAPSE NAME LIST (NCLAPS) 
real, integer, boolean 

begin 
do 
else 
end 

for 
goto 

if 
procedure 
step, until, while 

W
w
 
F
w
 

10 

Lr 

a2 

20 

22 

32



Routines’ continued 

switch 
then 

t= (BECOMS) 
; (SEMICO ) 

arithmetic operators 

Relational operators 

Logical operators 

{ (LSBRAK) 
J] (RSBRAK) 
: (COLON) 

(COMMA ) 

(LRBRAK) 

(RRBRAK) 
string opening quote a

w
a
s
 

o
o
e
e
 

74 
75 
76 
77 
78 

79 
80 

81 
82 
83 
84 
85 
86 
87



_ GENIERAL STRATEGY OF THE TRANSLATOR 

1. INTRODUCTION 

The task of the Translator is to convert the ALGOL 
text into object program operations, which are assembled 

into object store by means of a loader/assembler, and 

obeyed interpretively at run time under the control of an 
Object Interpreter, 

Lack of space necessitates the translator for 903 

ALGOL to be one-pass, and object program operations are output 
as the source program is read in. Because insufficient store 

is available to hold the Translator, the translator Name List 

and subsidiary tables, and the object program, some such 
decision is imperative. 

The object program is essentially a form of "Reverse 
Polish" notation, and the Translator uses a stack to perform 
the necessary re-ordering of the ALGOL symbols. The Trans- 
lator also uses a "Name List" which holds details of the 
declaration and use of the various identifiers. During 
translation a great many checks-are performed on the legality 
of the ALGOL text, but it cannot be claimed that these are 

exhaustive. 

The heart of the Translator is a routine called the 
"Basic Cycle Routine" (BCR) that extracts the next section 
of ALGOL text (a section being a string of characters ending 

with a delimiter such as ";" or begin ) 3; control is. then 

passed to a routine dealing with the delimiter concerned, 

and these routines may call further subroutines.



Qe LIMITATIONS IMPOSED ON IFIP subset ALGOL 

IFIP subset ALGOL restricts "full" ALGOL in several 

important ways (one of these being the exclusion of 

recursion). 903 ALGOL has further restricted IFIP subset 

ALGOL, in particular in the following two areas: 

21 All identifiers must be declared before they 
are allowed to appear in expressions or 

statements. This simplifies a one-pass 
Translator's task considerably, as all] 
relevant information about an identifier is 
in hand before it is actually used in 
processing. 

This rule also applies to labels, which 
dn 903 ALGOL must be declared in a switch 

_. list at the head of the block in which they 
occur, This does not disallow forward 
jumps; it merely allows the Translator to 
deduce to what level the jump is to be made. 
e.8e 

begin switch Sl:= PRED, JIM; 

go to JIM; 

FRED: --- 

begin switch S2:= JIM; 

£2 to JIM; 

JIM: =-= 

go to FRED; 

end: 

JIM: --- 

end . 

This means that there is no necessity to 
"chain" labels, with all its attendant 

complexities, 

Expressions that should be of type Boolean may 
be of type arithmetic. Boolean expressions 
must reduce to the Boolean constants true and 
false, which in 903 ALGOL is considered 
equivalent to the values " # zero " and "zero" 
respectively. Arithmetic expressions also 
reduce to these values at run time, and the 

Translator performs no check on this. As 
a result, the following constructs are permiss-— 
ible: 

afia+ b then ... 

t= a>b 

Note: Owing to the stack priorities involved, 

"ats ata>b" is the equivalent of "a:= 2a>b" 
which will assign the value one or zero to 
"al" depending on-the truth or otherwise of the 
Boolean expression. 

wilco



36 THE DATA STORE 

The Translator requires the following storage areas; 

(2) 

i 
3.1 

Name list (NL) 
Constants list, which includes label information 

from switch lists (CODL) 
Stack 
Buffer Area (exes 
Work space area (W 

The Name List (NL) 

The name list contains the names and details of 

all the identifiers with a current valid declara- 
tion. This list is divided into blocks separated 
by block stoppers. . 

When a block closes,the Name list is then 

cleared back to its stopper. 

A Name list entry is four words long and contains; 

WORDS 1 and 2 

(i) NAME First six characters not separators. 
Shorter names are stored left justified. 

WORD 3(from most significant) 

(ii) FML Set if formal parameter (1 bit) 

(iii) V Set if call by value 
Also set during procedure body to 
throw out recursive call (1 bit) 

(iv) U If identifier has been used (1 bit) 

(v) Special This procedure is interpreter not 
library (1 bit) 

(vi) OWNCOD Set if procedure is owncode (1 bit) 

(vii) ADDRES Address of identifier, or if formal 
parameter the parameter number (13 bits) 

WORD 4 (from most significant), 

(viii)FD Set 1 on procedure assignment 
Set 3 on leaving procedure body, and 
can fail trying to assign from outside 
(2 bits) 

(ix) TYPE Type of identifier (12 bits) 

(x) DIM Dimensions.of array or switch or 
number of parameters of a procedure 

(4 bits) 

A Block Stopper contains - 1 in word 1 and BN in 

Word 2.



Constants List (CODL) 

This list holds the constants used in the source 
program ; to prevent every constant taking up 
space each time it is used (as it would if the 
constants were inserted as they occurred into 

the object program) CODL is searched as each 
constant occurs to avoid duplication. 

The list also contains details of all switches 

and label declared during the source program. 

An example best illustrates its use: 

(assume in block 54) 

Switch S := LAB1, LAB2, LAB3; 

sets up NL and CODL as follows:- 

Name List coDpL 

name address ; 

(in CODL) ‘ 
s 1 : +3 (count of labels) 

LAB1 2 +0 
54 

LAB2 4 +0 
5 

LAB3 6 +0 
54 

When a label is met preceding a colon, it is 
looked up in NL; from there the address in CODL 

is available, and the current program address 
is entered in CODL in place of the "+0", The 
block number must be in CODL to discover at run 
time how many entries should be unstacked on 
performing a jump to a label. 

These addresses have base address added at 
load time so are distinguishable to avoid their 
being used as constants at translate time. 

Name List Entry 

N A M 

E Space Space 

F s 0 
M vj} ule] w 
L : a ADDRES (13 bits) 

i e) 
a 

£| ® 

FD TYPE (12 bits) DIM (4 bits 

PARAMETER ENTRY 

V TYPE (12 bits) 

O
D
E
N
 



3-3 

304 

The Stack 

The stack is used as a holding store to enable 

expressions to be converted intolteverse Polish, 

and also to deal with the nested statement structure. 
The next page shows a table of the stack - and 
compare ~ priorities used for delimiters. In 
general, operands are compiled, and operators are 
stacked. Unstacking is controlled by the stack 
priority yy and loops until a stack priority is 
met that is less than that with which the unstack- 
ing procedure is called. 

Stack Entry 1 

A p ay 

; R R| ¥ x ; 
CODE (8 bits) r/e2£lo]P]G |x {]SPR (4 bits) 

— c|B 
H ) 

>. 

iH M IL] A] R 
blk jo} R| x BN (9 bits) DIM (4 bits) 
A] i |G L 
D|N 

T 

Dp 
Cs 

TA ADDRES (13 bits) 

Stack Entry 2 

ARE 
CODE (8 bits) TlElo b G] | SPR (4 bits) 

a Cc 0 
si x 

Mi] M IL] A] R 
RIE jo} R| zB BN (9 bits) DIM (4 bits) 
A| I |G L 
D| N 

T 

Dy Cy TYPE (12 bits) 

Ty 

Buffer Area 

This area is 40 words long and stores source 
lines, the filling of this area is automatic. 
Once the Translator asks for a character either 
the next is supplied or it is found to be an nlecr 

and the buffer is refilled up to the next nlcr or 
a stopcode,



Stacked 
Item 

begin 

proc begin 

fox 

simple 

step, until, 

while 

MANPS 

ae 

then 
else 

then 

else 

GT, GIF 
GTS, GIFS 

B
w
 

o
w
 

> 
Vj 
A 
_ 

Stack 
Priority 

void 

void 

wo 
D
Y
 

FE
 

NO
 

O 
° 

o
o
 

0 
N
N
W
 

F
W
 

10 

il 

12 

TRANSLATOR STACK 

Compare 

Priority 

void 

void 

2 

2 

void 

void 

void 

void 

void 

void 

N
W
 

F
w
 

10 

x I 

12 

-8. 

Remarks 

unstacked by 

unstacked by 

not stacked; 

unstacked by 

unstacked by 

unstacked by 

unstacked by 

or while 

unstacked by 

replaced by [ 

unstacked by 

j 

) 
used only to 

unstack itens 

end 

H 

door, 

step, until 

do cer 4, 

then 

conditional expression 

conditional statement 

£Q to label 

B2 le
 ° switch 

unstacked at 

statement end 

array subscript



3.5 The work space area is 15 words long. Although 

the coding in referring to the 5th word would 

address it as W+4, to avoid ambiguity it is 

referred as WH and W+4 reserved for W plus the 

Value 4.



4, THE CHARACTER SET 

There are 63 characters in the internal set. Their 
octal representation is shown below alongside the 503 
flexowriter symbol. The 4100 Westrex character is shown 
alongside in brackets when different. 

00 10 20 +30 ho 50 60 70 

0 | Space ( ) 8 +(\) H P x 
1 nler ) ‘il 9 A Fu Q ¥ 
2) w(")] * 2 : B J R Zz 
3 t 4)] + 3 ; c K s [ 
4 (sy |, 4 < D L T £ 
5 Go 5 = B M U 
6 & . 6 > Fr N Vv 
7 t(/)) | / 7 2 G °) W 2(<) 

e.g. The double character 2 in the 503 code corresponds 

to in the 4100 code and is represented internally as ‘3. to
le
 

Note nlcr is represented in the westrex code by carriage 

return, line feed and run out. This is handled on input 
to make line feed the operative symbol. 

Stop code is treated in most respects as an nlcr. rt 
is recognised in GETCHA (FILBUF) and terminates the buffer 
filling. When the line has been processed the increment 
line count is omitted and the program pauses. 

Becomes (:=) is left stored as two characters but the 
routine GETCHA has a look ahead facility to cope with this 

as it does with parameter comments in procedures. 

The colon equals sign must not contain a separator. 

-10-



5. PROGRAM STRUCTURE 

A compound statement consists of a set of statements 
‘preceded by begin and followed by end. A block, however, 
has one or more declarations between begin and the set of 
statements which are again followed by the delimiter end. 
On meeting the first declaration after a begin, therefore, 

a block is implied. 

Whether or not an object block is set up depends 

entirely on the mode of storage used for the variables 
local to that block. The "wipe-off" mechanism at the end 
of an object block is best achieved by clearing back the 

stack pointer, without worrying whether to "block off" other 
areas of storage. There are two extremes to this problem: 

i) that all variables are kept on the stack, 
and hence there must be an object block 
generated for every source block; or 

ii) that there is so much room in store that 
all variables are given an absolute 
address in store and no object block need 
ever be generated. (Remember that we do 
not have to worry about recursion). 

This translator steers a middle course; all scalars 

are given addresses in store, and arrays, formal parameters 

etc., are kept on the stack. As a result, an object block 

is only set up for the latter cases. This approach should 
be contrasted with Randell & Russell's method, which keeps 
all variables on the stack. 

For object program operations see the pord manual. 

sila



6. TYPE HANDLING 

6.1 General 

The conversion of variables and expressions 
from real to integer or from integer to real is 
handled by the translator. Basically, the rules 
for determining the type of an expression are as 

follows:- 

(i) The type of an arithmetic operation is 
integer if both of the operands are of 

type integer, otherwise real. 

* e.g. (a + b)x D 

a+ b gives type integer; since 
Dis real, (a + b) is converted to 
real before the multiplication is 

performed. 

(ii) In an assignment statement, the expression 
on the right-hand side is converted to 
the type of left part list. 

eeg. Ttzis=qttTt 

q + T gives type real since T is 
real, and is converted to integer 
for the assignment to i. r being 
integer required that i, and any 
more elements of a multiple assign- 
ment should be of the same type. 

There are three conversion operations in the 

object code:- 

(i) R to I convert 2nd operand to integer 

(ii) I to RL " "operand to real 

(iii)I to R2 " lst operand to real 

e.g at= b + (D - e) 

The object code in reverse polish is:- 

a 
b 
D 
e 
I to R1 convert e to real 

- R 

I to R2 convert b to real 

+ R 
R to I convert b + (D-e) 
t= to integer 

The translation of conditional expressions 

when type conversion is involved, is 
illustrated in the following example:-— 

1px



A t= b+ (if p < a then a else PF); 

z denote a variable of type integer 

“ot. " " "  yeal 
a- 

A- @ By 

-13-



Since the else part produces: a real result, 

the then part must also produce a real result. 
The object code in reverse polish is:- 

A 
Q@

 
3B

 
oF

 
Pp

 

IF J————_—_, If False Jump to else part 

Unconditional Jump round else 

part 

US 

Ito Ric Convert d to real 

ito R22 Convert b to real 

+R 

* The conversion (I to R1) cannot be placed here 
since in a single scan the translator is unable to 

know that the else part will give a real result. 

Rules for Type Determination 

(i) Assignment Right hand part converted to 
left-hand part. 

atw= b+ D3 (b + D) is converted to 

integer 

(ii) Arithmetic or relational operation If either 
operand is real, 

ais (b + D) x e; b and e are converted 
to real. 

at= if B <d then p + q else y - R; 

d is converted to real since B is real (p + q) and 
y are converted to real since R is real. 

(iii) Subscript expression The subscript expression 
must give result integer. 

at= A [b+ D] ; b is converted to real 
since D is real. 

(b + D) is converted to integer since it is a 
subscript. 

(iv) For Statements The list elements must be 
converted to the same type as the controlled variable. 

. -14-



¢ while 

for V t= a,b step a until ¢: 

p<a dare’ 

f£ are converted
 to real since V is real. 

a,b,dse 
and 

ure call, the 

o the type 

formal param 
ane ters In a proced 

(v) Actual Par 

actual 
parame ters must be converte

d t 

real or integer 
of the correspo

nding 

meters



procedure P (a,B); value a,B; integer a; real B; 

P (A,b); A is converted to integer and b to real to 
match the types of the formal parameters a and B. 

(vi) Division xcept when specifically required 
through use of a special Algol word div, the result 

of a division is real irrespective of the types of 

though there are 2 division operations the operands, 

in the object code. 
following table:- 

This is best illustrated in the 

ALGOL Object code 
expression Conversion operation Result 

a/b - / integer real 

A/B - / veal real 

a/B I to R2 / veal real 

A/b I to R1 / real real 

a div b (fail if 
either real) div integer 

(vii) Exponentiation This is similar to division, 
but there are third and fourth object codes for 
exponentiation, 

(A) Integer exponentiation giving result 
integer. This operation may only occur 
when the mantissa is integer and the 
exponent is a positive integer constant. 

A special primitive for rti stops the 

expression being failed out when the ‘ 

integer is negative. . 

(B) 

The operations are illustrated below:- 

ALGOL Object code 
expression Conversion operation Result 

al b - t integer (1) real 

A } B - f real real 

a‘s I to R2 real (2) real 

a )ainteger 
constant - integer (3) integer 

A fp \(special(4) real 

6.3 Type determination in the Translator 

A global variable TYPBOX contains the current type 
(real or integer) of an ALGOL arithmetic expression. This 

is set by every arithmetic identifier or constant when 
compiling the object code for the operand (in TAKE) and is 
stacked with the binary operator which follows. When the 

expression is unstacked this type is unstacked into LOKTYP, TYPBO> 

is set to the resulting type of the expression and any 
conversions necessary are compiled. 

aT6



es
 

Exanple 

A t= d + EXf ; 

Translator : Object 
Stack TYPBOX Code _ 

real A A 

:=(R) vs 

integer d d 

+(i) + 

real BD) E 

*(R) * 
integer £ £ 

3; |unstacks the 

statement 

I to RL convert f to real 

real *R 

Ito R2 convert d to reall 

real +R 

real t= 

On unstacking the decision of whether to compile a 
conversion or not, is made by comparing TYPBOX with the 

type stacked with the operator. 

TRANSLATOR Conversion Rules 

(i) Each identifier or constant sets TYPBOX to 
its type (real or integer) in TAKE. 

(ii) The type from TYPBOX is stacked with + - * / , 
< <=> > #, t=, [, else, for comma, for:=, step, 
until, while. With the exception of [3 the type 
stacked is that of the preceding variable or express- 

ion. In the case of [ it is the type of the 
preceding array identifier. Boolean is stacked 

as integer. 

(iii) In the subroutine UNSTAK, the type stacked with 
the operator (e.g. + i) is compared with the current 
type in TYPBOX. A conversion is compiled if necess- 

ary and the relevant operator compiled (e.g. + R). 

The current expression type is then placed in TYPBOX. 

(iv) Conditional Expressions The type of the then 

part is stacked with else. On unstacking the else 

part, the type stacked with else is compared with the 

type of the else part (in TYPBOX) and a conversion 

compiled where necessary. ¥ 

-i7-



(v) The operators ft and/ always leave TYPBOX set 
to real on unstacking except for div and xt Ioas 

noted in 6,2 (vi) and (vii). 

(vi) The assignment operator 
to the type stacked with it. 

(vii) Array element On unstacking a subscript 
expression requires the type to be integer and a 

conversion is compiled if the expression is real, 

The type of the array, stacked with ec is then placed 

in TYPBOX. 

(viii)Procedure call If the call is to a type 
procedure (i.e. it yields a value) the type of the 
procedure is set in TYPBOX after compiling the call 
at ) or TAKID. 

(ix) The expression bracket '(', if and then do not 
require a type to be stacked with them nor do they 
change TYPBOX on unstacking. 

(x) For statements The type of the controlled 
variable is stacked with the start of each list element. 
On unstacking the list element expression, a conversion 

to the stacked type is compiled if necessary, and the 

type again stacked with the start of the next list 

element. 

(xi) Actual Parameters These are dealt with in the 
subroutine PRAMCH which determines whether to compile 
a conversion or not by comparing type of the actual 
parameter with the type of the formal parameter (this 

information is found in the Namelist). TYPBOX holds 
the actual parameter type, if this is an expression. 

COMPARISON between operator type and TYPBOX 

t= requires a conversion 

Operand 1 Operand 2 Object code conversion 

See Note See Note expression else 

integer integer op I - 

real real op R - 

real integer I to Rl, I to R1 
op R 

integer real I to R2, UJ,I to 
op R RL 

Operand 1 Operand 2 Object code conversion 

See Note See Note t= / [ 

integer integer {= op I - 

real real Of= op R R to lL 

real . integer I to Rl, I to R1 - 

= op R 
i TE 

integer real R to I, (Special R ) 

35 L ‘to R2 R tol 
op R 

-18- 



Note op R, op I denote an operator of type real or 
integer, Operand 1 is the variable or expression 
preceding the stacked operator, or the left part of 
assignment, or the then part and conditional expression, 
or the array identifier, 

Operand 2 is the variable or expression following 
the stacked operand, or the RH side of an assignment, 
or the else part in a conditional expression or the 
array subscript. 

-19-



7s NOTATION 

The action of taking the item at the top of the 
stack and distributing the various constituent parts 

of the item into fixed locations is denoted by the 
procedure RESTO. The parameters to this procedure 
correspond to some or all of the constituent parts 

of the item at the top of the stack. Those parts 
that are to be stored in fixed locations are indicated 
by a parameter, enclosed in square brackets, giving the 

name of the location. The final action of RESTO is 
to decrease SP (the stack pointer) by one, and setting 
TS to be the current top of stack. 

For example, if the item at the top of the stack 

is 
begin TR , 53, 1026, 0 

then RESTO [... BN , Q ] 

deletes this item, having set BN to be 

53 and Q to be 1026. 

The procedure PRESTO is a variant of RESTO which 
does not decrease SP and TS then remains the same. 

The subroutine STACK has, as parameters given on 

separate lines and enclosed in square brackets, any 

items which are to be added to the stack. The stack 

priorities are indicated by the final underlined integer. 

For example, 

STACK DECSTAT, NLP, BN, PP 

proc begin QO. 

will stack the item "DECSTAT, NLP, BN, PP" 

and then the item "proc begin , QO". 

The subroutine COMPIL uses a similar notation to 

indicate any operations (and their parameters) to be 
added to the object program. 

«20=



A subscripted item has the subscript value enclosed 
in square brackets, If an identifier is enclosed in 
round brackets this may be taken as ‘contents of'. e.8@. 

e. oh (NLP) t= By 

is putting a block stopper in the name list. -1 is put 

where the name list pointer points and the Block Number 
goes in the next word, Replacing the Global Block Number; 

BN := (NLP+1) rather than BN := NLP[1]. 

To make stacking easier, the Global variables take 

the values corresponding to the stacked position, E for 

example is stacked as the 9th significant bit of word one, 
and consequently the variable is carried about as O or 
+256 in the coding. The flowchart however, refers to E 

as O or l. It is thought safer for other multistate 
variables to refer to their actual values (DECSTA t= /O 0). 

Values of masks are not shown in the flowcharts: 

GRPCOD := masked TABLE [LASTCH+1] implies that the mask 
is the 12 most significant bits, and in agreement with 

SIR conventions the bits mean: 

7 X X_ x 

Separator | Beer awesi ie 10 
Digit in ALGOL 

ouble 

char. 

XX X xX X X 

Basic symbol Arithmetic Relational Special 

with assoc- operator operator action 

ated delim- , 

iter routine Parity bit 
for Westrex 

Logical 
operator 

Also, similar to SIR, there exists a variable called 

OPTION which varies the action of the translator. 

o“24-—



The bits mean: 

Halt on error 

Warning mode 

Output check functions 

o
r
n
e
 

Inhibit library scan 

The method of testing is shown as e.g. 

OPTION 
2 bit in a decision box. 

Finally, in dealing with the flowcharts, certain 
abbreviations have been used, but it is hoped that in 
the main they are self evident, some examples are given 

below. 

nlor New line carriage return 
ine Increment (Var := Var + 1) 
Ace Accumulator 
Aux Auxiliary register 

Str String 
Real/int/Bool) 
R/I/B real, integer or boolean 

Scalar , 

Note The symbols A and V are also used in logical tests 

ores (2-0) (#2) 

8. Reference Lists 

It has been found convenient to have certain lists 

available for immediate reference, These are: 

(i) Types (bit patterns corresponding to types 
of variables); 

(ii) Delimiter 8 bit values ( in practice stored 
at most significant end); 

(iii) Correspondence of routines to error numbers; 

(iv) Glossary of Global variables used. 

~22-



e
r
e
 

Dp 
a
 

ray
 

° 

° pa
 

° 

° a ° 

o
o
°
0
o
0
°
9
0
 

o
o
o
°
o
 

B
P
 

BR 
BE

 

P
R
P
 

He 
ra
 

fo}
 

o
o
o
s
g
 

o
o
o
.
°
0
 

o
o
o
 
8
 

er
 

fo}
 
o
o
o
°
 

Types 

o
o
o
 

P
P
P
 

oo 

o BB
 

O
r
r
 

E 
° 

O
r
F
r
F
H
 

°o
 

fo}
 

‘
o
u
r
 

o
o
p
 

a
m
c
 

S
e
u
 

O
r
F
F
r
F
R
 

O
r
F
r
F
r
F
E
 

b 
co)

 

Cc DEF GHJ 

aL 000 100 real 

1 010 100 £4dinteger 

Oo 100 100 boolean 

iL (e) (0) 00 real array 

1 1 0 00 integer array 

(0) ¥ ie) 00 boolean array 

Bi 000 100 real procedure 

1 010 100 integer - 
procedure 

ie) ro 0 io 6 boolean - 
da 

© 000 100. procedure’ ”° 

1 000° 401 - real procedure 
zero 

1 o10 101 integer - 
procedure zero 

0 100 101 boolean - 
procedure zero 

fe) 000 101 procedure zero 

(¢) 00 000 switch 

ie) QoO1 00aq label 

(e) 000 o10 string 

must not be followed by bracket 
must be followed by [ bracket 
must be followed by ( bracket 

type procedure 
Algebric (Arith Y boolean) 
Arithmetic 

Boolean result 
Integer result 
Switch or label 

not a switch, label or string 

String 

Some procedure zero (parameterless) 

-23- 

106100 

106500 

105100 

046100 

046500 

045100 

036100 

036500 

035100 
030100 

116120 

116520 

115120 
100120 

040200 

100200 

000040



(ii) Delimiter 8 bit Codes (internal entities) 

Octal Decimal 

0 - 63 As internal code for letters etc. 

100 64 Spare 

65 go to 
66 at 

67 for 
104 68 end 

69 print 
70 read 

ade begin 
110 72 code 

"73 algol 
7h comment 
75 boolean 

114 76 integer 
77 real 

78 array 
79 switch 

120 80 procedure 
81 string 
82 label 
83 value 

124 8h - true 
85 false 
86 < 
87 > 

130 88 # 
‘ 89 = 

90 implies 

91 or 
134 92 and 

93 not 
94 then 
95 else 

140 96 do 

97 t= 
98 step 
99 until 

144 100 while 
101 div 
102-127 ‘Spare 

200 128 spare 
129 then FE 

130 then S 

131 begin TR 

204 132 begin ALL 
133 for begin 

134 simple 
135 else EB 

210 136 else S 
137 GTF 
138 GT 

139 
214 140 Lee, 

LAL proc begin 
142 GTS 

14 GTFS 
14 STA 

145 NIG 

146 MAMPS 
oh



(iii) Table of error numbers 

C
O
M
N
I
N
 

W
U
F
W
D
N
H
E
 

out 
SETPRO 
SWITCH 
PRAMCH 

ACTOP 
NUMBER 
NUMBER 
COLON 
BCR 

BCR 

BCR 

BCR 

EVALNA 

FCLAPS 

SEARCH 
SEARCH 
OUT 
ENDSTA 

FOR 
TAKID 
RSBRAK 
LSBRAK 
LRBRAK 

SWITCH 
DECL 
BECOMS 
COLON 
TAKE 

TAKE 
ENDSTA 
LSBRAK 
UNSTAK 
EXP 

DEC 

SEARCH 
RSBRAK 
END 

TAKID 
GOTO 
FORCOM 
FOR 
TAKE 

COLON 

OUT (Read) 
Print) 

ACTOP RRBRAK 

PROCED 
BECOMS 

PROCED 

STEP 

AOP 

TAKID 

BCR 

QUOTE 

LRBRAK 

~25- 

QUOTE



46 
47 
48 
4g 
50 

51 
52 
53 
5A 
55 

56 
ey) 
58 
ee 
60 

61 
62 
63 
64 
65 

66 

68 
69 
70 

71 
72 
73 

75 

76 
77 
78 

79 
80 

81 
82 
83 
84 
85 

86 
87 
88 
89 
90 

91 
92 

TAKID 
REAL 
SEARCH COLON 

ACTOP 
ARRBND TITLE 

PRAMCH RSBRAK 

BECOMS 
SEMICO 
DEC 
EXP 

TAKCHA 
AOP 
RLT LOGOP 
LOGOP 
BEGIN 

SEARCH LRBRAK 
LRBRAK 
DEC 
UNSTAK 
PROCED 

ARRBND 
IF 
IF 
THEN 
ELSE 

ARRAY 
LSBRAK 
RSBRAK 
RSBRAK 

REAL 
COMMA 

STEP 
NCLAPS 
STEP 

RRBRAK 
LRBRAK RRBRAK 
STACK 
RRBRAK 
CHECK PROCED 

PROCED 
SEARCH 

PROCED 

PROCED 

GETCHA 
PROCED 

~26— 

RRBRAK



93 
94 
95 

96 

97 
98 
99 

100 

101 

102 
103 
104 
105 

106 
107 

108 
109 
110 

111 
112 

STATRM 
PRAMCH 
RSBRAK 

FORCOM 
THEN 
GETCHA 
SEARCH 
IF 

PROCED 
PROCED 
ARRBND 
UNSTAK 
QUOTE 

COLON 
FOMPIL 

PRAMCH 
PROCED 
PROCED 

RRBRAK 
BECOMS 

PROCED 

FOMCOM 

=27=



-.
g¢
- 

(iv) 

Variable 

ADDI 

ADDRES 

ARITH 

ARRCOU 

BN 

BUFLAG 

CHKSUM 

CNL 

CODE 

CODLP 

CONS 

GLOBAL VARIABLES 

Use 

local copy of ADDRES (3 
ADDI#1 DIM (I 
ADDI+2 FML (I) 
ADDI+3 Used (I 
ADDI+4 Vv (33 

Temporary storage for unstacked address 

Not now used 

Checks Validity of use of rel. or log. 
operators (fail if ARITH = 1) 

Array count on array declaration 

Current block Name 

BN+2 Last found block Name 

BN+4 Highest block Name used 

Marker to show when input buffer exhausted 

Zero constant 

Binary sum of characters for checking binary output 

Marker set during Name list collapse 

Used by PUNGRP to inform the loader of type of output 

Relative pointerto next free in CODL 

0; real constant. 1; integer, 2; Boolean (true/false) 

Set in 

FOMCOM 
) 

ADJI 

) 

UNSTAK 

SET to 1 in [, ST 
SWITCH 
Cleared in ENDSTA 
DO ElseS if ) J] 
ARRAY J] DECL 

DO FOR DEC 
PROCED NCLAPS 
UNSTAK SEARCH 

DEC FOR PROCED 

START GETCHA 

START 

PUNGRP 

NCLAPS 

COMPIL FOMPIL 
PUNGLB 

START SECODL 
NUMBER BCR 

EP 

START



~
6
2
-
 

Variable 

CONSTA 
DECSTA 

DECTYP 

DELIM 

DIM 

E 

EXPRES 

EXPTYP 

F 

FALCOU 

G 

GRPCOD 

ag 

LASTCH 

Use 

Current constant in ALGOL text 

© at begin, 1 during declarations 

2 during statements. ‘ 

Type of current declaration 

Current delimiter 

DELIM+lcontains the associated GRPCOD 
Temporary storage for unstacked dimensions 

Set 1 for statement, O for expressions 

Set for expression bracket in print list 

Records expected type(s) 

For clause marker 

Register to accumulate error number 

Marker for syntax checks (for clauses) 

Information code for current delimiter, or 

character (Sec. 7) 

Contains found Value of NLP 

Last character read from buffer 
LASTCH+1 Present character 
LASTCH+2 Next character 

Set in 

NUMBER BCR 
DEC FOR PROCED 
BEGIN GOTO If 
BECOMS COLON ( 
ARRAY REAL PROCED 
SWITCH ] 
BCR QUCTE AOP 
BCR 
UNSTAK 

Set to 1 at 
ENDSTA ACTOP SERPRO 

ELSE vo j ( 
Set to O at 

EXP PRINT QUOTE 

IF GOTO [ FOR 

SETPRO ( 
Set to Switch/Label 
in GOTO Cleared at 

ENDSTA ELSE IF 

» ) Cf 
DO FOR GOTO 

FAIL 

FOR STEP WHILE UNTIL 

TAKCHA GETCHA 

SEARCH ] 

GETCHA 
) EVALNA



- 
of
 

- 

Variable 

LASTCP 

LASTDL 

LEVEL 
LATYPE 
LINE 
LOG 
LOKTYP 
M 

MPFAIL 
MPRINT 

MREAD 

NAM 

NDAP 

NLP 

OPTION 

OWNCOD 

P 

PARAM 

PH 
PP 

PRCENT 

Use 

Last item compiled 

Last delimiter 

LASTDL+1 GRPCOD of LASTDL 

Not now used 
Left hand type of an assignment 
Number of line being currently processed 

Not now used 
Space reserved for unstack in TYPBOX 
OQ if delimiter only; 1 if identifier delimiter; 
2 if constant delimiter 
Records a failure 

Set in print statement 

Set in Read statement 

Contains Current (or last) identifier 
Notional data area pointer 

Name list pointer 

NLP+1 Initial Value of NLP (7995) 
NLP+2 Value of NLP after Ist Block 
Parameter of Translation 

Set for owncode procedures 

Parameter for cliecking validy of some subroutine 
calls. 

Now now used 

Set when processing a procedure heading 

Current value of pord pointer 

Temporary storage for found entry in Name list 

Set in 

COMPIL 

BCR 

BECOMS 
FILBUF 

UNSTAK STEP 
IDENT NUMBER 
END BCR 
FAIL 
PRINT LSBRAK 
LRBRAK ENDSTA 

READ LSBRAK 
LRBRAK ENDSTA 
IDENT 

START 
START NCLAPS 
SEARCH DEC 
PROCED FELAPS 

NCLAPS 
START 
PROCED CODE 

BCR EXP 
TAKE DEC 

PROCED 
COMPIL 

PROCED



-
1
€
-
 

Variable 

PROC 

PROCPO 

PRMCOU 

REL 

SP 

SPR 

sv 

TS 

TYPBOX 

TYPE 

WANTED 

WM 

XX 

Use 

Set for procedures 

Pointer to procedure name in actual call 

Number of current parameter 

Used to search constant area 

Not now used 

Not now used 

Stack pointer 

Stack priority. 

Variable to denote where an array .element 

is syntactically value 

Top of stack 

Type of current Algol section 

Not now used 

Marker to show whether a library function is required 

Warning message marker 

“Used for checking validity of : and, in 
array declarations 

Set _in 

Pe LRBRAK 
RAK QUOTE 

LRBRAK 

PROCED 
RRBRAK 

SECODL 

RESTO STACK 

UNSTAK 

ENDSTA 
GOTO BECOMS 

RESTO STACK 

SEARCH UNSTAK LSBRAK 
TAKID TAKE TYPCHK 

FOMPIL 

FCLAPS 
NCLAPS END 

ARRBND



9. Notes on Translator listing 

(4) 

(ii) 

(iii) 

Location of entities 

An entity can be located in the listing by 
bearing in mind the Group to which it belongs. 
There are four groups - 

Vol 1 has Group 1 All global variables 

Code conversion table 
Basic routines like PRINT 
and GUTCHA 

Vol 2 has Group 2 Routines such as COMPIL 
which use Group 1 routines 

Vol 2 has Group 3 -Routines such as DECL which 
use Group 2 routines, 

Vol 3 has Group 4 A routine for each delimiter 
e.g. array SEMICO etc. 

Within each group the order is alphabetical as 
far as possible. At the end of the whole 

translator is the Central Loop in order that 

jumps to delimiter routines can be to located 

places rather than forward jumps. This ordering 
helps to shorten the relocatable binary tape. 

Assembly 
1. Assemble using 6th April 1966 SIR to a 

relocatable binary tape. 

2. Input this tape which produces a global. 
label list, and also records the store 

used. 

3. Clear locations 6000-8178 so as to remove 
the loader, 

4, Input the initial names list in binary which 
occupies from 7800 approximately to 7998 

5. Dump the store using "Larry T22", 

6. Attach a clear stores (or punch it in) at. 
the front. 

Initial Names list 

The initial names list must be assembled using 
a version of SIR in 2048. After assembly clear 
locations 8-7168 to remove SIR and then dump 

the store using Larry T22.



CENTRAL LOOP 

The basic cycle routine (BCR) fetches the next 
ALGOL "section", which is in one of the following three 
formats, and sets the variable M to be 

O : delimiter by itself 
1 : <adentifier followed by delimiter 
2 ¢% constant followed by delimiter 

A delimiter being a basic symbol like ; or +, or 
an ALGOL word like begin. 

Depending upon the delimiter discovered, a transfer 
of control is made to the relevant routine, which will 

end with a jump back to OUT, In some cases BCR is called 
during the routines (e.g. in procedure it is called to 
check whether the procedure body is in ALGOL or in own 
code) and in these cases exit is made back to ouT2, and 
processing continues on that delimiter, 

BCR is called with one parameter which can be either 
0, 1, 2, 3 or 4, The first three require the section 
to comply with this forecast for M. BCR (3) is the general 
call which will accept any section, and BCR (4) is the 
call during subsequent discarding of the rest of an erron- 
eous statement or declaration, or of a comment, 

ERRORS 

FAIL 33  ) or ] precedes constant or identifier 

FAIL 10 M doesn't agree with the parameter in 
BCR (0, 1 or 2) 

FAIL 11 Alphanumeric character, '.' or ! wo" 
misplaced. 

FAIL 12 Constant or identifier true false 

FAIL 13 comment misplaced 

FAIL 15 Unrecognised underlined word, 

-33-



FAIL 

This routine is accessed whenever a failure occurs 
which doesn't make continuation impossible, N.B. If 

the stack Pointer moves beyond the beginning of the 

stack this is considered impossible and the program 

junps straight to ENDPRO,. In general, the action taken 

is to throw away the remainder of the statement. 

First the error message is printed which gives the 
error numberx, line number, line stored in INBUF and a 

pointer which shows which is the offending character 

(except in the case of an illegal character when the 
whole buffer is inspected and illegal characters replaced 
by ? or <— (westrex). The: error count is incremented 
and the program terminates if it reaches 20. The option 
is inspected and set to checking mode, followed by a pause 

in the 'halt on error' condition. It is here that a 
return is then made to NCLAPS if an unallocated label 

has been found, otherwise the stack is cleared back to 

a begin, and the global variables are reset. 

The current delimiter is then inspected. If not a 3, 
end or begin, the next ALGCL section is brought in to 
replace it, and this is repeated until one of these 

delimiters occurs. FATL then exits to either the routine 
BEGIN, or internally to PND or SEMICO unless the text 
is found to be inside a procedure Heading when the rest 
of the heading is discarded before processing. 

-34-



@AKCHA (Dake Character) 

This subroutine, called from BCR, places the next 
significant character in the source line into the global 
variable space. The current character is moved to 
LASTCH, the character just received is put to LASTCH+2 

for the 'look ahead! facility, while the character currently 

there becomes the present character to be processed, and 

moves to LASTCH+1, "space" or "tab" are ignored; "newline" 
replenishes the source line in the buffer by the use of the 
subroutine FILBUF,. 

The only characters requiring further study are ;: 

and ) oa The former may be followed by = to produce :=, 

and the tests on this branch are used to ascertain whether 

this is the case, 

The latter, closing round bracket, may be the start 
of a comment acting as an actual parameter delimiter. 

“eG: 
PROCCALL (a) this is a comment :.(b); 

is the equivalent of PROCCALL (a,b); 

PROC is tested to see whether we are dealing with 
a procedure call, and if so, the next character in the 

line is tested to see if it is a letter. This 
differentiates between 

’ 

PROCCALL (a) this is 

and PROCCALL (a 

If this is a comment, the buffer is searched for the 

terminating colon ; when found, the next character is 

checked to be (, and THISCH is set to comma (the other 

valid form of parameter delimiter). 

ERRORS 

FAIL 56 ; character other than separator between 
the : and ( of a parameter comment.



IDENTIFIER 

This routine merely builds up the identifier character 

by character in the state variable NAM, ignoring any sign- 

ificant character after the sixth (an IFIP ALGOL subset 
restriction). 

It is called from BCR when the next character is found 
to be alphabetic, and reads characters storing them in the 
most significant end of the double length pair NAM and 
NAM +1, It sets M to 1 and exits when a delimiter is 
found.



EVALNA 

This subroutine, called from BCR, converts a delimiter such as ~ begin~ into an integer, The voutine clears a location then adds successive characters to it multiplying each intermediate result by 67, When the closing character is met, the result is looked up in a table and replaced by the required delimiter 

ERROR 

FAIL 15; Unrecognised result after this evaluation, 

~37—



NUMBER 

_This subroutine (written by C.W. Nott of N.P.L) 
ends by placing the binary equivalent of the decimal 

digits in the state variable CONSTA and CONSTA+1. 

This routine calls its own local routines; STAND 
which standardises the floating point number in W3 and 

Wh (binary exponent in W5); POWER which multiplies the 
number by the accumulator to the power of 10. Bearing 

in mind also the uses of the variable space (below) the 

routine should be clear from the flowchart. 

LASTCH last character read. 

Sign set to one if the exponent part 
is negative. — 

W3, 4&5 used for the partially computed 
nuniber. 

Exp set to one by the character '4,' 

Point set td one by the character ',.' 

Dec , used to count the number of 
decimal places and for any 

exponent, 

Max set to one if the integer or 
exponent part of the number 

exceeds capacity. 

PWS parameter for POWER 

PMKR marker to remember whether this 
power was negative or not. 

ERRORS 
FAIL 7; illegal number 

FAIL 8; integer number too big.



BASIC CYCLE ROUTINE (BCR) 

This subroutine is used to fetch the next section 
of ALGOL text, and to allow for comments after the 

delimiters ; and begin. It is controlled by its 
parameter P as follows: 

(1) P= 0,1, or 2: a certain type of ALGOL 
section is expected, and this is checked by 

comparing the final value of the state 

variable M ; 

(ii) P = 3 : no check is made on the type of 
the ALGOL section; and 

(iii) P = 4 3 the subroutine is merely being 
used to find the next delimiter, such as 
in an end comment, or during scanning 
after an error (see FALL). The 
constituents of identifiers and numbers 
need not therefore be processed. 

BCR itself uses several subroutines, First it 
calls TAKCHA, which brings up the next character which 

is tested to distinguish between delimiters, numbers and 

identifiers. 

A ~ (or " in 903 ALGOL) announces an ALGOL word 
(see Notes on Internal Character Set), such as~beegein~™. 

This is operated upon by the subroutine EVALNA to convert 

the string of characters into an integer, and the delimiter 

list is then searched. If the delimiter is comment, further 

characters are taken until ; is met, which ends the comment. 

If the delimiter is true or false CONS, M, and CONSTA are 

set. Otherwise this joins the basic symbol path. 

If this character is a basic sysmbol, the symbol list 

is searched, P is checked where necessary and the routine 

finishes, " 

If this character is a digit, decimal point or 10, 

NUMBER is called to place this number in the variable CONSTA. 

Similarly in the case of a letter, IDENT is called to 

place this identifier in the variable NAM, 

ERRORS. 

FAIL 13; sonmant does - follow; or begin. 

FAIL 11; letter, digit, '.' or '10' misused. 

FAIL 10; identifier or constant not as expected. 

FAIL 12; true or false preceded by constant or 

identifier. 

FALL 33; J or ) precedes constant or identifier. 

PAIL 15; unrecognised ALGOL word (EVALNA). 

-39.-



UNSTAK 

This subroutine is used to unstack items from the top 

of the stack until an item is reached whose stack priority 
SPR, is less than the value given by the parameter, or 
until the stack is empty. In general, items are unstacked 
directly into the object program (in some cases after 
extensive typechecking) with the following exceptions: 

(i) 

(ai) 

(iii) 

(iv) 

ERRORS 
FAIL 34; 

FAIL 64; 

If the stack priority SPR of the current 
item is 12, the variable P (set up by 
TAKE or EXP) determines whether to generate 

INDA or INDR. 

If the SPR of the current item is 8 (i.e. 
‘it is a relational operator) the parameter 
should not be 8 as this would mean an 
“incorrect use of relational operators, e.g3 

x<yrea 4 

If the top of the stack is else E, TYPBOX 

and LOKTYP must be checked to produce the 

special case; 

UJ PP+2 

Update ADDRES 

I—>Rl 

when LOKTYP is zero and the else part 
turns out to be real. (This is a 
consequence of the single pass technique). 

Another special case is where the delimiter 
from the stack is t=, the necessary conversion 

may be R->I if the left hand side is integer. 

Where the delimiter from the stack is an 

arithmetic or relational operator, further 
typechecking is necessary, and special 
primitives may be compiled, as in the cases of 

integer { 2 or Real { integer. 

incorrect use of relational operator, 

illegal use of subscript variable. 

FAIL 104; Div has real operand. 

vel Oia



EXP 

This subroutine is used to check the validity of use 

of the current delimiter and to change the state variable 

E to expression level if necessary. 

The parameter P has the following meanings; 

(i) P=1 Delimiter can only be used at 
expression level. 

(ii) P=2 Delimiter can only be used at 

statement level, 

(iii) P = 3 Delimiter can be used at either 
level. 

UNSTAK is called with a parameter of 12 to unstack 

IND (the parameter P deciding whether INDA or INDR is to 

be generated), and the top of the stack tested to see 

whether := necessitates a changing of E to zero. Logical, 

arithmetic and relational operators in statements other than 

procedure calls are failed here. 

ERRORS: 

FAIL 35; illegal statement ~ delimiter misused. 

FAIL 55; go to, 3 or for used in expression. 

wil.



PRAMCH 

This subroutine is called from ACTOP to check the actual 
parameter with the correcponding formal parameter and to 

compile the relevant object program operation which will 

access this actual parameter for the procedure that is 
being called, 

TABLE 1 gives a list of formal parameter types 
with the possible actual paramete types. In general, 
the rules are 3- 

(i) If the F.p. is called by name, the a.p. must 
have the same type and kind. 

(ii) If the f.p. is a scalar called by value, the 
actual parameter may be a scalar, expression, 

array subscript, constant or type procedure 

call. 

“(ai4i) %If the f.p. is a label called by value, the 
actual parameter may be a label or switch 
subscript. 

(iv) Procedures, strings and switches and parameters 

of formal procedures may be called by name only. 

The choice is further complicated, in the case of 
scalars, by the fact that an actual parameter may itself 
be a formal parameter. Table 2 gives the possibilities 
for this case, 

The subroutine uses the following variables:- 

PROCPO : namelist address of procedure using 
this actual parameter. 

PRMCOU ; number of actual parameter in the 
procedure call. 

I: namelist address of dctual parameter. 

TYPBOX : expression type (real or integer) 

Vv: O if called by name, 1 if called by 
value. 

The first job of PRAMCH is to recognise whether the 

parameter is of a formal procedure or not, then W locations 

7 to 10 are set up the formal entry, V formal, type of 
formal and type difference (actual type - formal type). 
Next in the cases PRAMCH (0) and PRAMCH (3) when parameter 
checking words are compiled W14 is set with the check word, 

then W1l is set with a bit pattern according to W7, the 
formal entry, which later helps with the processing of 

: al2.



identifiers, non-formal function designators and array 

subscripts. 

Little remains now except the somewhat tedious syn- 
tatical checking and to compile the parameter call. After 

this is compiled the parameter checking word if applicable 
and the routine exits to ) or comma. 

ERRORS 

FAIL 53; fp is not label when ap is a switch 
subscript. 
fp is not called by value when ap is 
a switch subscript. 

fp is not scalar when ap is procedure 
call or array subscript. 
fp is not scalar when ap is expression. 
fp is not called by value when ap is 

expression, 

ap is integer constant when fp is 
non integer by name, 

ap is Boolean constant when fp is 
non Boolean, 

ap is real constant when fp is non real 

by name.’ 
ap is wrong type array when fp is array 

by value, 
illegal ap called by value. 
ap is not label when fp is label by 

value. 
ap is not Boolean when fp is Boolean 

scalar. 
wrong type of formal parameter 
scalar used as ap when fp is called 

by value. 
wrong type of formal parameter used 

as ap when fp is not scalar, 

FAIL 51; toomany actual parameters, 

FAIL 94; unrecognised formal type. 

FAIL 108; parameter of formal procedure called by 

. value. 

. 43.



h
h
o
 

TABLE 1 

Formal Name 

F.P. Actual Parameter Parameter or Valve Actual Parameter Operation 

scal aL i ifi calar roe hail identifier/constant ee x } Take address or 

Boolean tt " Boolean x ) Take constant address 

array Integer array Integer array N ) 

Real " Real ae N Take address of array map 
Boolean " Boolean " N 

procedure Blank procedure Blank 
procedure N ) 

Integer " Integer " N ) Take address of procedure 
Real " Real mt N block 
Boolean " Boolean " N 

switch Switch Switch N Take constant area address 

string String String N Take address of actual string 

label Label Label N Take label address 

Label Label WE Take label address 
Switch subscript Label Vv Index label address (INDS) 

array Integer array Integer array v ) Take address of array map 
Real " Real is v ) 
Boolean " Boolean " v ) 

scalar Integer/Real constant (Integer v ) Take value and compile type 
" " " (Real v ) conversion if necessary. 

Boolean constant Boolean Vv Take value.



“
G
 
7
 

TABLE 1 continued 

. Formal Name 

F.P. _ Actual Parameter Parameter or Value Actual Parameter Operation 

scalar expression (Integer v ) Compile type conversion if 

" Real Vv necessary. 

" Boolean Vv 

Integer/Real identifier (Integer v ) Take value and compile type 
" " # (Real v ) conversion if necessary. 

Boolean identifier Boolean Vv Take value. 

Integer/Real array subscript Integer Vv Index value and compile type 
" " " a Real Vv conversion if necessary. 

Boolean array subscript Boolean | Vv Index value. 

Integer/Real procedure call (Integer Vv Compile type conversion 
u- " " a (Real v if necessary. 

Boolean procedure call Boolean Vv



Actual Paraneters which are Formal Parameter Scalars 

Example 

real procedure P (t) ; 

begin real. R; 

Ria t 

end 

procedure Q (a,b,c) 

begin real Y; 

Y= P (a) + P (b) + P 

end 

H 

. 

Q (JIM, FRED, BILL) ; 

; Value a; 

value t; integer t; 

integer a,b; real 

(ce); 

The call of procedure Q with actual parameters JIM, 
FRED and BILL will give value, 

stack since 
However, 

stack, 

So the final two parameters 
Value which puts the result 

In the following table 
procedure Q would be SOURCIE 

DUSTINATION. 

the formal parameters are value a, 

the procedure P expects 
since its formal parameters t is called by value. 

address on the 

name b,c. 

an integer value on the 

address, 

are called by Take Tormal 
in the stack. 

of actual parameter operations, 

and procedure P would be 

TABLE 2 

SOURCE DESTINATION Actual Parameter operation 

value | I/R value - Take Formal Value. R to I if 

necessary; 

value} I/R| value R " " " ItoR " 

value name Take Stack Address (R/IFUN) same 
type 

name I/R| value I Take Result Call by Name 
: R to I if necessary 

mame 1/R value R Take Result Call by Name 
I to R if necessary 

Iname name Take Formal Address sane type 

' ~46-



SEARCH 

This subroutine searches the Name List for the current 

identifier, 

(1) 

(2) 

(3) 

(4+) 

Ww 

In the 

passed, the 

BN+2 (ound 

and is called with one of four parameters: 

= 0 3; search the entire name list and find 
the identifier ; 

= 1 3; search the part of the name list 
local to this block and do not find 
the identifier; 

= 2 3 search the part of the name list local 

to this block and find the identifier ; 

and 

= 3; as search (1) except the identifier is 
then inserted. 

case of w = 0, each time a block stopper is 
block number stored with it is copied into 
Block Number). 

When the identifier is found (and that is what is 
desired), it is marked as used (for later checking in 
NCLAPS COLLAPSE NAM LIST) and, where necessary, resets TYPBOX, 
Certain checks then follow, such as, is the identifier 

. preceding a [ an array or switch; is the identifier preceding 
a ( a procedure with parameters or a formal procedure’ zero, 

ERRORS 

FAIL 

FAIL 

FAIL 

FAIL 

FAIL 

FAIL 

FAIL 

48 

17 

87 

18 

61 

99 

38 

identifier declared locally. 

identifier not declared locally. 

identifier not switch or label when 

so required, 

Use of undeclared identifier. 

( misplaced, or missing procedure 

name. 

Inconsistent use of identifier. 

[ preceded by other than switch or 

array. 

49



SECODL 

This routine searches the constant area for a given 

constant. The global variable Q is used to search CODL; 

where the constant is not found it is entered, thereby 

updating the pointer CODLP, 

, ~ig-



TAKE TDENTIFIER 

This subroutine is used to find the nanelist entry 

for the current identifier and to compile the correct 

object program Take Address or Take Value operation. 

The subroutine SEARCH fails if the identifier is 
not found in the Namelist and leaves I pointing to the 
entry if found. An extra check is made that an identifier 

occurring in an array declaration is non local. The 
type of the identifier is then inspected to determine which 
object program operation should be compiled. 

(i) switch e.g. go to S [n] 

No operation is required until the switch 
subscript has been processed, 

(ii) label e.g. go to LABEL 

GTF or GT is stacked depending on whether 
the label is a formal parameter or not, 
together with the label address from the 
namelist. This will be compiled in UNSTAK at 

the end of the statement. 

(iii) array e.g. a + arrayname [b] 

Take Address or Take Formal Address is 
compiled with the address of the array map. 

(iv) type procedure 

e.g. FUN := 

t= a + FUN 

In the former case, this is an assignment to 
a function designator shown by P = 0. If FD 
= 3 this assignment is outside the procedure 

body; otherwise FD is set to 1 to show the 

assignment has been made, IFUN or RFUN is 
compiled depending on whether this is an integer 
procedure or real procedure with no parameters. 

In the latter case, this is a function call 

shown by P = l. An operation to reserve 
space for the function designator is compiled, 
followed by CFF or CF, depending on whether 

this procedure is a formal parameter or not, 

together with the object program address of 

the procedure block. 

(v) scalar e.g. REAL := int + REAL 

The relevant Take Address or Take Value 

operation is compiled depending on whether 

P = 0 or 1 anda further distinction is made 

when the variable is a formal parameter, which 

may be called by name or value (see TABLE 1). 

-ho-



TABLE 1 

P f£[I] v[r] type Object Program Operation 

(6) 10) - Integer Take Integer Address TIA 

[e) 0 - Real . Take Real Address TRA 

1 ie) - Integer Take Integer Value TIR 

J (0) - Real Take Real Value TRR 

ie) a ie) Integer . . , A 
0 1 0 Real Take Formal Address TPA 

0 Aa Integer Take Stack Integer Address IIUN 

(@) Real Take Stack Real Address REFUN 

ny 1 (0) Integer Take Formal Value Indirect TRCN 
1 1 (e) Real (fake Result Call by Name) 

1 L 1 Integer ; ny a 
1 L 1 Real Take Formal Value TFV 

ERRORS 

FAIL 41 ; indentifier in bound pair is local 

FAIL 22 3; incorrect use of label, go to obscured 

. or missing. 

FAIL 111 ; type procedure zero declared with 
parameters. . 

FAIL 46 3; assignment to function designator is 
outside procedure body, or assignment 
to formal procedure 

FAIL 31 3; assignment to switch 

FAIL 25 ; non type procedure as function designator 

* TFA and TFV are the same interpreter primitive. 

“S0=



This subroutine is used to process an identifier or 

constant that is used in a statement or expression, 

However, if the current ALGOL section does not contain 

an identifier or constant, the last delimiter is checked, 

and if it is ] UNSTAK is called to generate INDA or INDR 

as required, 

If the current ALGOL section contains an identifier, 
it is processed by the subroutine TAKE IDENTIFIER (which 

uses the P which is a parameter to TAKE). 

It should be noted that P = 1 when on the right hand 
side of an assignment statement, otherwise it is 0, 

Where the current ALGOL section contains a constant, 

P is checked to remove errors such as "2:5", and after 

a check that a Boolean constant is not used in an 
arithmetic expression CODL is searched, having the 

pointer Q set. CONS is set by BCR; to zero if real, to 

one if integer, and to two if Boolean. The test on 
CONS determines what instruction to generate before exit. 

ERRORS 

FAIL 31; constant before := or [ 

FAIL 45; Boolean constant cannot be used here. 

FAIL 30; adjacent delimiters inadmissible.



TYPCHK 

This subroutine, called during a for clause, checks 

the type of the controlled variable (held in LOKTYP) 
against the type of the current identifier (held in 

TYPBOX). It generates a conversion if necessary, and 

resets ‘TYPBOX to the type of the controlled variable. 

-52-



ACTOP 

This subroutine is used in conjunction with PRAMCH 
to check the legality of an actual parameter and to compile 
the appropriate object program instruction. 

A count of actual parameters in the current procedure 
call is kept in PRMCOU which is checked, in the routine 
i against the number of parameters in the nanelist entry 
for the procedure name. 

If © is set to expression level, this actual parameter 

could be an expression or a procedure call. 

Dlxample 

(i) PROCALL (a + Q (S) + Dy sevvere 

(42)  PROCALL (a, Q (S), cevsesevaeee 

The difference between these cases is shown by the top 
of the stack; in the latter case the top of the stack is 
'(' since each actual parameter unstacks back to the '(! 
of its procedure call; in the case of an expression, the 
top of the stack will be an arithmetic, relational or 
logical operator. If this actual parameter is an expression, 

TAKE and UNSTAK are used to complete the processing of the 

preceding expression, FE is reset to 1, and PRANCIL is called 

to check that the corresponding formal parameter is a 
scalar called by value, and to compile a type conversion if 

necessary. 

If this actual parameter is a procedure call, PRAMCH 

is used to check that the corresponding formal parameter 
is a scalar called by value. 

If EF is set to statement level, the last delimiter 

(LASTDL) is examined to determine between the three possible 

types for this actual parameter. 

Example 

(i) PROCALL (a, B[1], eeeceeeeeee+LASTDEL = J 

(ii)  PROCALL (a,¢stringp}, ...-+.++.+LASTDEL 

(i4i) PROCALL (a,b,C seveeececeeeee sLASTDEL 

or ( 

o
f
l
 Rw
 

~
 

In the first case, the top of the stack is used to 
determine whether this is an array or switch subscript. 
If the former, PRANCH is used to check that the formal 

parameter is a scalar called by value, and to compile a 

type conversion if necessary. If the latter, the top of 

the stack is GTS or GTFS and PRAMCH is used to check that 

the formal parameter is a label called by value. 

In the second case, PRAMCH is used to check that 

the corresponding formal parameter is a string called by 

name.



ACTOP (Contd) 

In the third case, M is tested to determine whether 

the actual parameter is an identifier or a constant. Lf 

M = 1, this is an identifier and the Namelist is searched 

to find the declared entry. PRAMNCH then checks the type 

of the actual parameter with that of the formal parameter 
and compiles the relevant object program operations. 

If M = 2,this actual parameter is a constant. and 
S“CODL is used to find or enter the constant in the constant 
list, and PRAMCH is used to compile the correr.t "Take constant" 

operation. 

Calls of PRAMCH: 

Identifier 
Constant 
Expression 
String 

Switch call 
Array subscript or procedure call. W

F
u
U
N
r
O
 

ERRORS 

FAIL 6 3; More than 14 parameters 

FAIL 5 ; Illegal actual parameter 

FAIL 49 ; Blank parameter 

5h



ARRAY _BD 

This subroutine, called by the delimiters , and: , 

checks the validity of their use, TAKE and UNSTAK 

are called to complete the processing of the preceding subscript 

bound expression, at which time the top of the stack should be 

the opening square bracket introducing the subscripts. 

If this is in an array declaration, XX is used to 

check that (e.g.) : 

veal array X [a:b: ...6. 

is caught as illegal, and the count 

of subscripts is incremented in DIM and restacked. 

When this is during the use of the array, any necessary 

conversion is generated before restacking the incremented 

count of subscripts. 

ERRORS 

FAIL 66; misused , or 3: in an expression, 

FALL 50; colon in subscript expression. 

FAIL 103; commas or colons wrong in array 
bounds.



This subroutine is used by any delimiter that starts 
a declaration (e.g. integer); it checks the validity of 
its use and sets up a block if this is the first declara- 

tion after a begin. 

If begin ALL is on the top of the stack, no action 
need be taken. , 

If begin is top, a stopper entry is made in the 
Name List and the block number updated (begin TR would 
have already done this). The begin entry is unstacked, 
and P tested to see if this routine has been called from 
array. If so, a block entry is compiled into the object 

progran. DECSTA is set to 8 O before exit. 

ERRORS 

FAIL 36 ; declaration starts incorrectly 

FAIL 54 3; declaration follows statement. 

FAIL 63 3; misplaced declarator. 

~56-



DECL 

This subroutine is usedto enter all declarative 

information into the Name List. 

After checking that the identifier has not already 

been declared during this block, name and type are entered. 

The parameter is then examined for the type, as follows: 

0 Scalar. Space is reserved in the notional data 

area. 

L Switch, Space is reserved in CODL (Constant 

Object Data Load). 

2 Procedure, The current program address is 

inserted. 

3 Array. ARRCOU is incremented. 

4 Label. Space is reserved in CODL, having 

inserted the current block number. 

ERROR 

FAIL 273; declaration without identifier. 

-57-



ENDSTA 

This subroutine is used to complete the processing 

of a statement. If an input/output statement is 

terminating the marker is cleared and © set to l. 
DECSTA is set to statement level and XP is used to 
change the state variable © to expression level if 
necessary. If © is zero, TAKE is called to generate 
the correct instruction, and ARITH,E, and #XPTYP are 

set up to deal with the next statement. 

Otherwise, if the current section contains an 

identifier (which must be a procedure identifier), the 

Name List is searched to discover whether this identifier 

is a formal parameter before generating the relevant 

instruction. EXPTYP is cleared before exit. 

WRRORS 

FAIL 32 3; constant or identifier other than 

procedure zero used as statement. 

Array element or switch used as 

statement. 

FALL 20 

-58-



FORCOM 

This subroutine is called at the end of a for list 
element to compile the correct object program operation. 

TAKE and UNSTAK are used to complete the processing of 

the preceding expression and the top of the stack (tS) 

is then used to determine between the various kinds of 

list element. 

EXAMPLE (i) for C Vi = ay sevevsece simple 

(ii) for C V: = 1 step 1 until n, ... until 

(iii) for C Vi: = a while a <10, ..... while 

N.B. aif FORCOM is called by ',' this could be the delimiter 
between dimensions in an array subscript used in a list 

element. 

(iv) for C V: = A [1,3] ..... [ 

In cases (i), (ii) ana (iii) the type of the controlled 
variable is restored from the stack into LOKTYP, and TYPCHK 

is used to compile a type conversion if necessary. The 
relevant object program operation is then compiled and a 

check is made that the top of the stack is for, and an 
exit is made back to ',' or do. 

In case (iv), the number of dimensions is updated and 
stacked with '[' and a return made to the CENTRAL LOOP, to 

read the next ALGOL section, 

ERRORS 

FAIL 96; incorrectly constructed for clause, 

FAIL 43; missing ] on array element preceding do. 

“hon



COLLAPSE FORMAL PARAMETERS (FCLAPS) 

This subroutine is called from the delimiter ; , 

such as in the following example: 

integer procedure P (a,b,c); integer a,b,c ; 

P t= a+ b ; 

At this stage the name list will look like this 

block stopper 

P< value of NLP (which was 
stacked with proc begin) 

a 

b 

The block stopper is erased, and for type procedures a 

check made that an assignment has been made to the 
procedure identifier during the procedure body, 

The V bit in the procedure name list entry is cleared, 

as we are now no longer in the procedure body and recursion 

cannot occur. WM is set and a warning message is given 
for every parameter not used, as these parameters are 

inspected and condensed to one-word entries containing 
type and whether by value or not. 

ERRORS 

FAIL 16 ; No assignment to type procedure identifier. 

. -60-



COLLAPSE NAME LIST (NCLAPS) 

This subroutine, called from end, resets the Name 
List Pointer to the position it held before the current 
block began, and reinstates the previous block number. 
If any identifier is declared and not used, a warning 
message is produced, except in the cases of switch names 
which are ignored, and label names where the warning 
message is upgraded to a fail. The variable CNL is set 
on entry so that if more than one label is unallocated 
each will give a failure message. 

ERROR 

FAIL 79 3; unallocated label.



real, integer, Boolean 

Wis set up with the corresponding type, and a 

check is made that DECTYP is zero. If not, this 

would mean that we were already in a declaration (as 

DECTYP is set to zero on ;) such as 

begin real integer assesses 

DECTYP is then set up with the type from W, and 

DEC is called with a parameter of l. This in effect 

looks back over its shoulder to see whether this is 

the first declaration in a block (if it is DEC will 

have to update Current Block Number, DbCSTA.’ etc). 

ERRORS 

FAIL 47; illegal declaration 

FAIL 76; misplaced delimiter 

array 

The subroutine DEC is used as described above, and 

a check is made on DECTYP. The failure path is exactly 

like the one above, where we are already in a declaration 

other than real, integer or Boolean (e.g. "begin string 

array...."). 

If DECTYP is set to real, integer, or Boolean, it 

is further limited to array; if DECTYP is 0, ALGOL specifies 

that a non-type array is treated as a real array, and DECTYP 

is thus set. MAMPS (Make Array Maps) is then stacked. 

(i) so that inspection of the top of the stack 

can show us that we are in an array 

declaration(this is particularly important 

when the array bound variables are them- 

selves nasty things like procedure calls), 

and 

(ii) so that the relevant object program can be 

generated at the end of the array bound 

list (see ] flowchart) 

ARRCOU becomes zero ready to count array names (see 

, (comma) which calls DECL (3)) 

e.g-: begin real array A,B,C,D, [sateen 

ERRORS 

FAIL 72 ; illegal declaration 

62



begin 

This routine checks that begin has been used to 

start a block or statement and sets DECSTA to zero. 

Note that no block entry is compiled or set up in the 

Namelist since it is not yet known if this begin starts 

a compound statement or a block. This work is done in 

DEC by the first declaration following a begin. 

ERRORS 

FAIL 60; illegal use of begin i.e. in expression or 

following := 

-68-



do 

The subroutine FORCOM completes the object program 
instructions for the preceding for list element, The 

object program 'For Statement End' is then compiled and 
an instruction to update the address following 'For' in 
the object program to point to the controlled loop. A 

stack entry is made of for begin to show that this is a 
for statement, with the second address following 'For' 
which will be updated to point: to the statement following 
the for statement. The block name is also updated to 
its highest value, 

The 'for clause' is defined in ALGOL as being 
followed by a Statement (a construct wide enough to include 
a Block, or another for statement). “& is therefore set 
to 1 (to show that a statement is expected); ARITH and 
F (the for clause marker) are cleared - the latter was 
only of use during the processing of the for clause. 

-64.



else 

The object program for the preceding statement or 
expression is completed by TAKE and UNSTAK, If the top 
of the stack is 'then S' the subroutine ENDSTA is used to 

compile the procedure zero call, 

e.g. if a < b then procedure else go to label; 

The top of the stack is then tested for 'then S' or ‘then EF! 
to differentiate between a conditional statement and a 
conditional expression, In each case a UJ operation is 

compiled which will be updated at the end of the statement, 

and the IFJ operation around the then part is updated. 

Finally ‘else E' or ‘else S' is stacked, (in the case 

of an expression TYPBOX is stacked to show the type of the 

then expression), as is the address of the incomplete UJ 

operation around the else part. 

In the case of conditional statements E, ARITH and 

EXPTYP are reset for the following statement.



~
 

end 

DECTYP is checked to make sure that this delimiter 
does not complete a declaration (e.g. begin real a end), 
and the subroutines ENDSTA and UNSTAK are used to complete 
the processing of the preceding statement. The top of 
the stack is then inspected; if end shows that we are 
ending a for statement (TS = for begin) we must cycle 
round (having compiled something into the object program 
using FSIEND ) and inspect it again, because ALGOL's definition 
of a for statement is recursive (see diagram) and therefore 
one end e sen) lots of for statements. 

(B10ck) 

( SOY ar. Compound Tail 

Note: { Statement ae pxD ) 

Vertical arrows link saailiminiaiaiiacaaianaiiiaainiaia —— 
the relevant . For Statement 
definitions 7 = 

Horizontal arrows connect ane ee 

the symbols and ( for clause )~—~>(Statement 
variables which Seeeienet 

together form a defini- 

tion. 

cy
 

Having unstacked any lurking for begins, the top 
of the stack should now be a form of begin. If it is 

not it is a failure. e.g. for end. 

Where the top of the stack is begin, this is the end 
of a compound statement. begin TR signifies that this 
is the end of a block containing no array (i.e. no block 
entry compiled) , and begin ALL that this is the end of a 

block containing an array (and therefore there is an 
unconditional jump to be updated). For the relevant 

entries that are unstacked here, see DEC. 

In the case of a block, the name list is collapsed 
back to the first entry for this block, as all the 
variables declared local to this block are now no longer 
valid. 

A test is then made for the end of the program (is 
stack empty ) and if so ENDPRO is accessed. Otherwise 

BCR is called to extract any comment following end 

e.g. end of this routine; 

A warning message is emitted if there is a delimiter in 

this section, which will catch 

end 

x fe Le 

Final exit jis to OUT 2, as BCR will already have recognised 

-66—



one of the delimiters which terminate an end comment, 

namely end, else or 3. 

ERRORS 

FALL 40 ; Top of stack not a begin 

-67-



for 

After checking that for is used at the start of 
a statement (using M, F and EXP) DECSTA is set to fo o 
since this is a statement, A stack entry is made of 

for together with its address in the object program. 

This address will be used by do to update the pointer 

to controlled statement. The current block name is 
stacked before being updated to the next highest block 

name for the for block. 

The object program compiled contains two markers 
which will be updated by the addresses to the controlled 

statement and the statement following this for statement. 

The subroutine BCR is used to read the next ALGOL 

section which should be ‘controlled variable := ! 

we
 e.g. for cv := 1 step 1 until n do 

TAKE compiles the correct object instruction for 

the controlled variable and a stack entry is made for the 

first list element with the type, held in TYPBOX, of the 

controlled variable. If the controlled variable is type 

real, the list elements must all be real and similarly when 

the controlled variable is type integer. The stack entry 

‘simple! is used to distinguish a simple list element 

from a 'step' or 'while' element, 

Finally, ARITH and E are set for the following list 

element expression and F is set to 1 to show that this is 

a for clause. 

ERRORS 

FAIL 21 ; controlled variable is not a simple 

variable. 

PAIL 44 ; for doesn't start a statement 

-68-



go_ to 

After checking that the delimiter is used to start 
a statement, DECSTA is set to /o o to show this is a 
statement. The delimiter is stacked as GI since it 
is not yet known if this is a Bots to label or go to 
switch statement. 

e.g. go to labelname; 

go to s [arb] 

i and WXPTYP are set up for the Following label 
or switch expression. 

ERRORS 

FAIL 42; go to follows an identifier or constant. 

-69-



The initial test removes as a failure such phrases 

as? 

b i= (a+b) aif ... 
b t= Alb] if ... 
ifa> then if ... 
b t= atb if woe 

EXP is then called to set E to zero if the preceding 
delimiter was := as in 

a t= if wes 

In the case of E being equal to 1, DECTYP is tested. 
It is normally zero (i.e. we are not ina declaration) 

and DECSTA is set to /o o. It may however be set to 
array, as in: 

» real array A [1 : PROC (i 

In this case of course DECSTA must not be changed. 
A test is then made to see if this is an actual parameter, 

and if it is E is set to zero. 

If E was not equal to 1, a further test is made to 

remove constructs such as : 

y + af 

The stack entry saves the state variables ARITH, E 

and EXPTYP . and stacks if to be checked by the following 
then. ARITH and E are then set up for the Boolean 

expression in the if clause, 

ERRORS 

FAIL 67; af misused 
FAIL 100; if must not be used after log., arith. or 

rel. operator. 
FAIL 68; if used in declaration other than array 

. declaration. 

=.=



Procedure 

The subroutine DLC is used to set up a block if 

this is the first declaration in the block, a stopper 

is put in the name list, the marker PH is set to show 
that a procedure heading is being processed, and a call 

is made to BCR to read the next ALGOL section i.e. 
‘procedure name! (3 A check is made that the preceding 

delimiter was real integer, Boolean or non-type. Unless 

the procedure is own code an unconditional jump is compiled 

to jump round the procedure body and a stack entry is made 

of proc. begin together with various state variables and 
the address (PP) of the incomplete UJ operation to be 
updated at the end of the procedure body, 

DECSTA is set to statement level for the procedure 

statement following the specification part, the number of 
parameters (PRMCOU) is set to zero and the current block 
name ( BN) is updated for the procedure block. 

If the procedure has no parameters (delimiter is;) 
DECTYP is set to procedure zero and the procedure nane is 
declared in the namelist using the subroutine DCL. The 

procedure entry operation is compiled, DECTYP cleared and 
a call is then made to BCR to check whether the procedure 
body is ALGOL or own code. 

If the procedure has parameters, DECTYP is set and 

the procedure name is declared in the namelist. PRCENT 
is used to hold the namelist address of the procedure name, 
and PROC is set to l. The loop that follows reads a 
formal parameter, checks that it has not already been 
declared, enters it in the namelist and updates the count 
of parameters. When ‘yi has been read, the procedure entry 
operation can be compiled and the namelist entry completed 
with the number of formal parameters; PROC and DECTYP are 
cleared. : 

The next call to BCR should fetch ; which terminates 

the formal parameter part. 

Example: £.p. part value part 
7 

integer procedure F (a, b, c) 3 yalue a,b; 

specification part 

real a,c} array b3 

Another call is made to BCR to determine whether a 

value part or the specification part follows, ach 

identifier in the value part is checked for appearance 

in the formal parameter list.v:isl in the namelist entry. 

When the terminating ';' is read the next ALGOL section 

is read (specifier, ) and the specification part is processed, 

This consists of specifiers followed by identifier 

list(s) e.g. real a,c; There is-an inner loop to read 

each identifier in the list following the specifier, check 

that it is a formal parameter and complete the namelist 

entry. If the formal parameter is a switch the number of 
dimensions is set to 1 but if it is an array or procedure 

-71-



Procedure (Continued) 

the number of dimensions or parameters is not yet known 

and is set to + 15, This number will be updated at 

the first occurence of this identifier with its parameters, 
and subsequent occurences must agree, 

If the delimiter is ';' this could be the end of the 

specification part or the end of this specifier list. 

In the former case, a check is now made that each formal 
parameter has been specified and if called by value that 
the type is not switch, string or procedure. The program 

then compiles the check words for the run time parameter 

checking. 

Finally, a check is made to determine whether the 
program body is ALGOL or own code, If the latter DECSTA 
is reset to declaration level, the formal parameters are 
collapsed and the next delimiter is read to discard the ; 

903 ALGOL requires the parameters of formal procedures to 
be called by name, this is checked in PRAMCH however, when 

a parameter is found to be of type procedure. 

ERRORS 

FAIL 101 ; procedure name not followed by ; or ( 

formal parameter part not followed by FALL 102 3; 

H 

FAIL 90 ; wrong delimiter in value or specifier 
part 

FAIL 109 ; constant not allowed in procedure heading 

FAIL 65 ; illegal specifier 

FAIL 17 ; identifier in specification part is not 

, a formal parameter, or formal parameter 

not fully specified 

FAIL 94 3; string, switch or procedure called by 

value 

FAIL 6 3; more than 14 parameters 

FAIL 86 procedure inside another declaration 

FAIL 85 Name list overflows 

FAIL 92 ; Identifier not specified 

FAIL 88 ; formal parameter not followed by ) or , 

a2 =



step, until, while 

The first test is’ to ensure that these delimiters 
are only used in a for clause, The arithmetic expression 
preceding the current delimiter is then completed by the 
subroutines TAK and UNSTAK,when the top of the stack 
should then be simple. The variable G is set up with the 

quantity stacked with simple, and LOKTYP is also set up. 

TYPCHK is called to generate any conversion necessary, 

CeGeta 

real A, 3 integer c; 

for A t= B+ ec step 

and TYPBOX is then set to LOKTYP. The current delimiter 

is then examined. 

: 

hae
) n
i
t
 

In the case of the delimiter step, simple is restacked 

with a marker to indicate that the delimiter until is 
required, and an instruction compiled (an example of a compiled 
for statement is given below). In the case of the delimiter 
while ARITH is set up for the algebraic expression following. 

ERRORS 

FAIL 78 ; corresponding for missing 
FAIL 21 ; "“s=" omitted from for clause 

5 FAIL 80 step, until or while misused in 

for list element. 

Example 

begin integer i,j,k ; 

for i := 1 step 1 until j do k := 0 

end; 
generates: PRIM FOR 

p>+ 8191 
+ (block number) 

>+ 8191 
TIA 4 
TIC 1 
PRIM STEP 
TIO A 
TIR gj 
PRIM UNTIL 
PRIM FSE 

'_update 

TIA k 
TIC O 
PRIM ST 
PRIM FR 

_— update 

Ws



switch 

A check is made that we are not already ina 
declaration and then DECTYP is set to switch. The 

subroutine DEC is used to set up a block if this is the 
first declaration in the block, The next ALGOL section 
is fetched, which should be 'switchname :=', and LABCOU 

is cleared, DCL is used to declare the switchname in the 
namelist and make an entry in the label data area (CODL). 

The loop is used to process each label in the switch 
list. (IFIP ALGOL allows only labels in the switch list). 

e.g. switch S t= TOM, DICK, HARRY; 

Each label is declared in the namelist together 
with the address of the label in CODL and BN is entered 
in label entry in CODL. At the end of the switch list 
when ';' is read, the number of labels is entered in CODL 

and DECTYP is cleared. 

e.g. layout of CODL for the above switch declaration. 

Conl, Namelist 

n + 3 eee no. of labels s an 

neil + 0 

n+2 BN eee Lor TOM TOM n+l 

n+ 3 + 0 

n+ 4 BN eee for DICK DICK n+ 3 
n+ 5 +o 
n+ 6 BN eee for HARRY HARRY n+ 5 

When the left-hand label is declared, its object 

program address is placed in the LODL label entry, over- 
writing the + o, 

ERRORS 

FAIL 263; no := following switch identifier in 

switch declaration, or switch 
misplaced. 

FAIL 4; wrong identifier in switch list. 

, : ~ 7p



This routine first tests that we are at expression 

level (if not, it fails) and then completes the processing 

of the algebraic expression following if by calling TAKE 

and UNSTAK. If is then unstacked and ARITH, E and EXPTYP 

are restored. The state variable E is then used to decide 

whether then should be stacked as "then S" or "then E", The 

pord pointer (PP) is also stacked, ready to update the IFJ 

when the delimiter else is met. 

ERRORS 

FAIL 97; then in statement 

FAIL 69; corresponding if has been omitted 

or conditional expression without 

an else.



u 

There are three possible uses of the delimiter 

ts as follows: 

(i) in a switch declaration, e.g. 
switch S t= eesveer 

(ii) in a for clause, e.g. 
for v t= 1 step seeceee 

(iii)in an assignment statement. 

The first two are dealt with under switch and for 
respectively, and this routine merely deals with assign- 

ment statements, After checking that we are not assign- 

ing to a constant or an expression and that we are not in 

a declaration, for clause or procedure call, DECSTA and 

SV set to fo o and TAKE deals with the variable (simple 

or subscripted) which precedes the delimiter. 

As we require all left hand elements in an assign- 

ment to be the same type the top of the stack is then 

inspected to see if it is a t=. If not LHTYPE is set 

to TYPBOX and the delimiter is stacked, otherwise LHTYPE 

and TYPBOX are tested for equality and the multiple store 

function (STA) is stacked. 

ERRORS 

FAIL 28 ; := preceded by constant or used inside 

an expression. 

FAIL 52 ; := must not appear in actual paraneter 

list, or in a type or array declaration. 

FAIL 7 3; := appears in a for statement and other 

than in assignment to controlled variable. 

FAIL 112; Different types on Left hand side of an 

assignment. 

~76-



~
 

Most of the processing for a ; in a declaration 
is dealt with in that declaration 

e.g. switch or scalar do their own, and array 
declaration is done in RSBRAK 

STATRM is then called to complete the processing 
of the read or print statement. ENDSTA is used to 
complete the processing of the constituents of the 
statement otherwise, and the top of the stack is then 
tested. 

if this is for begin, the one or more for statements 
are completed. If it is proc begin, this is unstacked, 
the variables stacked with it are restored, and COLLAPSE 
PORMAL PARAMETERS is called to condense the formal para- 
meter entries in the Name List to two parts —— type, and 
whether the parameter is called by name or value. 

If the top of the stack is any other form of begin, 
the routine is finished. 

ERRORS 

FAIL 53° 3 TS not a form of begin. 

FAIL 93 ; Declaration ends incorrectly (STATRM) 

FAIL 20 ; Array or Switch element as statement 

(ENDSTA) 

FAIL 32 3 Constant or other than a non-type 

procedure zero as a statement (2NDSTA) 

299s



Avithmetic Operators (+ - x / div ) 

As the treatment of these operators differs only 
slightly their stacking priority is recorded and then 

they share the routine. Their validity is checked 
using EXP which sets i: to expression level. If the 
operator is not preceded by an identifier or constant 
and is not a closing bracket it is stacked with its type 
and associated priority, except for special cases unary 

plus which is ignored, and unary minus which is noted 

for special action. 

Otherwise the identifier or constant is dealt with 
and TAKE and UNSTAK are called, or in the case of the 

closing bracket just UNSTAK. 

ERRORS 

FAIL 30 ; Adjacent arithmetic operators, 

FAIL 57 3; Adjacent operators inadmissable,.



Relational, Cperators (<>4> x =) 

After checking the validity of the use of the 
operator, TAI and UNSTAK are used to process the 

preceding identifier or constant, and to unstack any 
operators with priorities greater than or equal to the 

priority of the current delimiter. 

The current operator is then stacked with its 

stack priority and the type of the preceding variable 

ox expression. E is set to expression level. 

FAIL 58 ; illegal use of relational operator. 

-79-



Logical Operators (> VA—=) 

The stack priority of the present operator is stored 

and a check is made on the use of this delimiter. 

setting Pb to expression level, further checks are 

if the current operator is — Except in that 

TAKE and UNSTAK are used to process the preceding 
fier and to unstack any operators with priorities 

or equal to the priority of the current operator. 

the delimiter is stacked with its priority. 

BRRORS 

FAIL 58 3; logical operator misplaced 

FATL 59 3; <dllegal use of — > 

-80- 

After 

made 

case, 

identi- 

greater than 

Finally



This routine deals with the use of this delimiter 
for a subscripted variable, a switch designator or as 
the start of a bound pair list in an array declaration. 

lxamples: (i) eeeee + TABLE [2,6] 

(ai) gQ to SWITCHLIST [4] 

(iii) array TABLE [lip, -3: n] 

If DweCTYP is clear, this can be a subscripted 

variable or a switch designator, and DECSTA is set to 

statement level. TAKE is used to process the switch 

or array identifier and leaves I pointing to the namelist 
entry. If the preceding identifier is type array, a 
stack entry is made of [ together with the current values 
of the state variables. Kk, ARITH and EXPTYP are then 

set for the following arithmetic expression. 

If the preceding identifier is type switch, a test 
is made that the preceding delimiter is go to unless 
this is an actual parameter, 

Example: go to S [4] or Funcrion (s[4],p) 

GIFS or GTS is stacked depending on whether this 
is a formal parameter reference or not, together with 

address in the namelist entry. The current delimiter 
is then stacked. , 

If DECTYP is set, this delimiter is being used to 
start a bound pair list or to start a subscript expression 

inside a bound pair list. 

Example: array TABLE [1 : LIST [3], 2: n] 

The former case is shown by the fact that the top 
of the stack is MAMPS (array map) and DECL is used to 
declare the array name in the namelist. '[! is stacked 
with a dimension count of 1, a marker of 0 to signify 
lower bounds and I to give the namelist address of the 

arrayname. 

In the latter case, Ef is set to expression level 

and TAKE is used to process the preceding array nane, 

before [ is stacked, 

ERRORS 

FAIL 33 ; Opening square bracket follows closing 
bracket. 

FAIL 73 ; Opening square bracket not preceded by 
identifier. 

PAIL 24 3; Switch designator not a parameter or 
preceded by go to 

. -81-



The preceding expression is completed using TAKE 

and UNSTAK. The top of the stack then indicates 

whether this is an array or switch subscript expression, 

or an array bound pair list. 

In the former case the top of the stack is [ and 
the TYPBOX is tested to determine whether the subscript 
expression is type integer or real. If real, a 

conversion to integer must be compiled. The values of 
the state variables as at [ are then restored from the 
stack, The number of dimensions counted on the stack 
with [ is checked with the array declaration in the 
namelist. if this is -1 in the namelist (formal 
parameter specifier) the number of dimensions is now 
entered. 

Example: procedure P (b) 

At= [2,3,n] 5 

array b ; 

When the array b is used, it is found that the 

number of dimensions is 3 and can therefore be placed 
in the namelist entry for b. 

If this is a switch subscript, there must be only 

one dimension. Finally, if this is an array subscript, 
INDR is compiled in the case of an expression and IND is 
stacked in the case of a statement since it is not yet 
known if INDA or INDR is required. 

Example: A (27 2 = B [dy w]e =| seweees 

In the latter case, when this is an array declara- 

tion, the number of dimensions is placed in DIM, a 

lower/upper bound marker in xx and I is restored to the 

array nanelist entry. A check is made that the bound 

pair ended with an upper bound (xx = 1); and & and ARITH 

are set for the following declaration or statement. 

The top of the stack should then be MAMPS and this is 

compiled with the number of dimensions and arrays 

(ARRCOU). The namelist entries for each array are then 
updated with the number of dimensions and the address of 
the array map in the object program. Finally, the 

shared map is compiled. 

Example: array A,B,C [p;q, ‘s:t] 

ARRCOU will be 3 and number of dimensions will be 2. 

ERRORS 

FAIL 74 3; unmatched closing square bracket. 
FAIL 51 3; wrong number of dimensions in array 

subscript 
FAIL 95 3; more than one dimension in switch 

subscript ; 
FAIL 75 3; upper bound missing from bound pair 
FAIL 23 s incorrect array declaration. 

~82-



eo
 

DECTYP is used to decide whether the current 

identifier follows a label or a lower bound in an array 

declaration, 

In the latter case, ARRBND processes the current 

ALGOL section, 

In the former case, EXP is used to check the 
validity of the use of the label, and DECSTA is set to 
statement level (as one cannot label a declaration without 
an intervening begin). The Name List is then searched 
for the label (which must have been declared in a prior 

switch list declaration), and the label entry in Label 
Object Data Load (CODL) should have an address part of 

zero. If not, this label has been met on the left-hand 

side of a colon twice and this is an error, 

The next test is to see whether this label has been 

declared in the current block. If it hasn't, it is an 

error except in the case of procedure definitions or for 
clauses (see example below). In these cases, the 

existing entry in CODL is cleared and a new entry made. 

ERRORS 

FAIL 29; : in type or switch declaration. 

FAIL 9; label used twice on left-hand side. 

FAIL 48; misused identifier. 

Example: begin real c; switch S:= LABEL; 

procedure P (q,r,s); integer q,r,s}3 

LABEL: begin gq jj =1r + 8; 

go _ to LABEL 

end; 

If the first begin sets the block number to (say) 
52, LABEL is entered by its declaration in Block 52. 

But procedure P resets the block number to 53, and when 

LABEL is met on the left-hand side, the block numbers do 

not correspond. 

-83-



This routine deals with various uses of the 
delimiter , . 

i) INOUT (1) is called to deal with a read or 

print list comma, 

ai) If we are in a procedure call (PROC = 1) 
the subroutine ACTOP is used to process 

the current ALGOL section. 

iii) If the for clause marker is set, the 
subroutine FORCOM is used to distinguish 
between the use of comma between for list 

elements in which case PRIM DO is compiled 
after a typecheck, or between subscript 

expressions of a variable used in a for 
list element. The latter case does not 

return from FORCOM, 

The former case then stacks the simple for 
element again, sets the state variable ARITH 

to 1 and exits, 

iv) If DECTYP = O the current delimiter is 
being used between subscript expressions, 

and is processed by the subroutine ARRBND, 

v) Finally, the top of the stack is used to 
differentiate between various uses of a 
comma in an array declaration, 

If the top of the stack is MAMPS, the comma 
is between array identifiers viz: 

real array A,B, wees 

and the identifier is entered in the Name 

List using DECL. 

Otherwise the comma is being used between 

subscript expressions, and ARRBND processes 

the current ALGOL section, 

ERRORS 

FAIL 96; incorrect for clause (FORCOM) 

FAIL 77; incorrect use of comma, or missing identifier 

in array declaration, 

-~B4-



wa
ne
 

After the initial checks to catch subscripted 
constants and ( imuediately following a closing bracket 

DECTYP is tested to see whether we are in array declara- 
tion or in a statenient. The state variable M will tell 
us whether this delimiter is being used as an expression 
bracket or in a procedure call. 

In the case of an array declaration, a failure is 
indicated if b is set to statement level, unless PROC 

shows that an actual parameter is being processed, e.g. 

real array A [1l: PROC (a, PROC2(.... 

or real array A [1: PROC (a,(b + © ws... 

The former example will cause M to be set at 1, and 

the latter zero, which is the subject of the next test. 

Where this is a procedure call, the flowchart joins with 
the path where DECTYP was zero and this was a procedure 

eall (which has already called EXP to change LP to 
expression level if necessary, and set EXPRLS in the 

case of a read or print statement e.g. read reader (CL) ss) 

The case of "go to S (..." is failed by the next 
test on EXPTYP; and the procedure name is then searched 

for in the Name List. If we are in an array declaration, 
we check that the array bounds are not local (illegal 

ALGOL) , before discovering whether this is a type 
procedure. If so, space is reserved on the run-time 
stack (by compiling PRIM UP) for the result of the type 
procedure. Various variables are then stacked with the 
delimiter, and these variables are then set up to deal 

with the actual parameters of this procedure call. 

In the case of expression brackets used in 

statements, the delimiter is stacked, and PROC set to 

zero while processing the constituents of the bracket. 

ERRORS 

PAIL 61 ; peer acee 
FAIL 82 ; must not appear in a type declaration 
FAIL 62 ; function designator as subject of 

"zo to" 

FAIL 41 3; array bounds must not be local 
FAIL 25 3; non type procedure as function 

designator in expression



The state variable PROC indicates whether this 
delimiter is an expression bracket or a procedure call 

bracket. 

If it is an expression bracket, we first check 
that we are in fact within an expression, This kills 
"a + (b)", The translation of the preceding 
expression is completed using TAKE and UNSTAK, after 
which the top of the stack should be the delimiter (. 
This is unstacked and discarded, having reset PROC to 
the stacked value. 

If it is a procedure call bracket, ACTOP is called 

to complete the translation of the preceding parameter, 
PROCPO is saved in I after the top-of-stack test, and 

the stacked state variables restored. A test is now 
made to see whether the count of parameters in the call 

is equal to that in the declaration; if not, it may be 

that this procedure is itself a formal parameter. If so, 
the specifier in question has not told us how many 
parameters are required, and we must fill the count in 

from this call. However, we must first check that this 

count has not been filled in by some previous use, if so 
it must fail as in the last line of the following example. 

real procedure JIM (a,b); anteger.a ; real 
procedure b; 

begin integer q,r,83 

° $ b (a,r,s)3 

b (q,r);3 

The test on f [I] determines what sort of 
instruction to compile for this procedure call. Finally, 

if KE is set to statement level a check is made that the 

next delimiter is an "end-of-statement" delimiter, 

otherwise in the expression case TYPBOX must be set. 

n 

ERRORS 

FAIL 81; misused ) other than in expression. 

FAIL 82; unmatched closing round bracket. 

FAIL 5; dillegal parameter list. 

FAIL 51; incorrect number of parameters. 

FAIL 111; incorrect number of parameters in 

use of formal procedure, 

FAIL 84; wrong delimiter after procedure 
statement. 

~86-—



q{ (string opening quote) 

This routine checks that this string is being 
used as an actual parameter, or in a print statement, 
and then compiles an unconditional jump around the 

string, which will be updated when the last character 

in the string is read. There is a count of nested 
string quotes, and the characters are packed for the 

object program. When the final closing string quote 
is read, the UJ operation is updated and a is stored 

as the last delimiter. If a parameter case the following 
call to BCR should fetch ' ,' or ')', and ACTOP is then 
called. If a print statenent INOUT is compiled, and 

the delimeter which may be end or else also decides the 
following action. 

Bxample PROCALL (a, {stringp, {otherstring}) 

After compiling the actual operation for the string, 
ACTOP is used to check that the corresponding fonrnal 
parameter is specified as string called by name. ois 
set to statement level and if the current delimiter.is 
')' exit from this routine is to ) entry 2 to complete 
the processing of the procedure call. 

ERRORS 

FAIL 5 3 string is not the complete actual 
parameter 

FAIL 105 3; wrong delimiter following string. 

ffs


